

Tetrahedron Letters 41 (2000) 1767-1769

TETRAHEDRON LETTERS

First total synthesis of 11-oxa steroids

Frédéric Cachoux, Malika Ibrahim-Ouali and Maurice Santelli*

ESA au CNRS no. 6009, Faculté de St-Jérôme, 13397 Marseille Cedex 20, France

Received 6 October 1999; accepted 22 October 1999

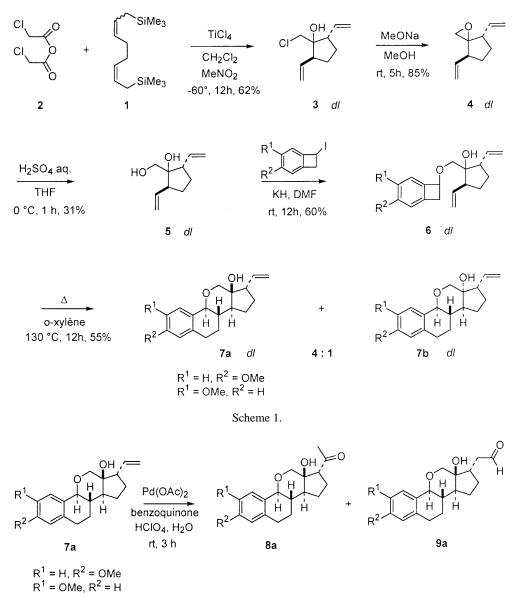
Abstract

The first total synthesis of 11-oxa steroids was achieved via an intramolecular Diels–Alder cycloaddition of orthoquinodimethane as the key-step. © 2000 Published by Elsevier Science Ltd. All rights reserved.

Steroids continue to be one of the most intriguing classes of biologically active compounds.¹ In particular, heterosteroids have recently received much attention. Indeed, the replacement of one or more carbon atoms of a steroid molecule by heteroatoms brings about notable modifications of its biological activity.² Engel and colleagues have found that replacement of the 11-carbon atom of the pregnane skeleton resulted in interesting modifications of the biological activities.³ For example, it was found that 11-oxaprogesterone synthesized from hecogenin presents a significantly higher ovulation-inhibiting activity in comparison with progesterone.⁴

In connection with our interest in steroid synthesis, we recently described a novel strategy for the synthesis of 12-oxa steroids.⁵ To the best of our knowledge, there is no total synthesis described in the literature concerning the elaboration of the 11-oxa steroid structure. In this paper, we report a total synthesis of 11-oxa steroids based on an intramolecular Diels–Alder cycloaddition of orthoquinodimethane.⁶ The key reactions leading to those compounds are schematically depicted in Scheme 1.

The condensation of BISTRO 1 with anhydride 2 led to dl-2,5-divinylcyclopentan-1-ol 3 which is treated by MeONa to give epoxide 4 in good yield. Acid treatment of epoxide 4 led to diol 5 which is alkylated by iodobenzocyclobutenes to give dl-benzocyclobutenes 6.


Thermolysis⁷ of **6** afforded a mixture of two oxa steroids **7a** and **7b** in 55% yield and a 80:20 ratio, which were separable by chromatography on silica gel. The steroids **7a** and **7b** have, respectively, a *trans–anti–trans* and a *trans–anti–cis* ring fusion.⁸ Interestingly, the main product **7a** matches the *trans–anti–trans* ring fusion configuration of the natural products.

Wacker-type oxidation⁹ of the vinyl group of 7a led to the corresponding ketone 8a and aldehyde 9a resulting from an anti-Markovnikov hydroxypalladation, in a 4:1 ratio and 70% overall yield (Scheme 2).

^{*} Corresponding author.

^{0040-4039/00/\$ -} see front matter @ 2000 Published by Elsevier Science Ltd. All rights reserved. PII: S0040-4039(00)00195-7

1768

Scheme 2.

In conclusion, we have described the first short and efficient synthesis of 11-oxa steroids from BISTRO and chloroacetic anhydride. The possibility to change the nature of the substituent of the aromatic ring enhances the synthetic versatility of our methodology.

Acknowledgements

We thank Dr. R. Faure for his assistance in NMR measurements and Dr. B. Vacher (Pierre Fabre Médicaments, Castres, Fr.) for helpful comments. We also thank MESR for a fellowship for F. Cachoux.

References

- 1. Gronemeyer, H.; Fuhrmann, U.; Parczyk, K. Molecular Basis of Sex Hormone Receptor Function; Schering AG: Berlin, 1998, Vol. XIV.
- (a) Morand, P. F.; Lyall, J. Chem. Rev. 1968, 68, 85. (b) Huisman, H. O. Angew. Chem., Int. Ed. Engl. 1971, 10, 240. (c) Huisman, H. O.; Speckamp, W. N. Steroids. Int. Rev. Sci.: Org. Chem., Ser. 2 1976, 8, 207.
- (a) Engel, C. R.; Rastogi, R. C.; Roy Chowdhury, M. N. *Steroids* 1972, *19*, 1. (b) Engel, C. R.; Salvi, S.; Roy Chowdhury, M. N. *ibid.* 1975, *25*, 781. (c) Gumulka, M.; Ibrahim, I. H.; Bonczatomazewski, C. R. *Can. J. Chem.* 1985, *63*, 766. (d) Engel, C. R.; Mukherjee, D.; Roy Chowdhury, M. N.; Ramani, G.; Salvi, V. S. *J. Steroid Biochem.* 1975, *6*, 585.
- 4. Engel, Ch. R.; Mukherjee, D.; Roy Chowdhury, M. N.; Salvi, V. S. Steroids 1986, 47, 381.
- 5. Wilmouth, S.; Toupet, L.; Pellissier, H.; Santelli, M. Tetrahedron 1998, 54, 13 805.
- 6. (a) Oppolzer, W. Angew. Chem., Int. Ed. Engl. 1977, 16. (b) Kametani, T.; Nemoto, H. Tetrahedron 1981, 37, 3.
- 7. The typical procedure of thermolysis is as follows: A solution of **6** (0.4 g, 1.33 mmol) in 20 mL of *o*-xylene was stirred under argon at 130°C for 12 h. After cooling, the solvent was removed under reduced pressure (0.2 mmHg). The resulting oil was purified by flash chromatography on silica gel (9:1 EP:EE) to afford compound **7a** (0.17 g, 42.5%) and compound **7b** (0.05 g, 12.5%).
- The configuration of the different steroids was established by analysis of their ¹H, ¹³C, COSY and NOESY NMR 400 MHz spectra. Selected spectral data are as follows. Compound **7a**: ¹H NMR (400 MHz, CDCl₃) δ 1.50–2.00 (m, 8H), 2.20 (m, 1H), 2.56 (s, 1H), 2.70 (m, 1H), 2.79 (m, 2H), 3.57 (d, *J*=11.3 Hz, 1H), 3.96 (d, *J*=9.3 Hz, 1H), 4.01 (d, *J*=11.3 Hz, 1H), 4.94–5.09 (m, 2H), 5.53–5.71 (m, 1H), 6.73 (dd, *J*=2.4, 8.2 Hz, 1H), 6.97 (d, *J*=8.2 Hz, 1H), 7.09 (d, *J*=2.4 Hz, 1H). Compound **7b**: ¹H NMR (400 MHz, CDCl₃) δ 1.50–2.20 (m, 9H), 2.76 (m, 2H), 2.94 (m, 1H), 3.54 (d, *J*=11.3 Hz, 1H), 3.76 (s, 3H), 4.01 (d, *J*=11.3 Hz, 1H), 4.11 (d, *J*=9.3 Hz, 1H), 4.94–5.09 (m, 2H), 5.53–5.71 (m, 1H), 6.74 (dd, *J*=2.4, 8.2 Hz, 1H).
- (a) Pellissier, H.; Michellys, P. Y.; Santelli, M. *Tetrahedron* 1997, 53, 10733. (b) Smidt, J.; Hafner, W.; Jira, R.; Sedlmeier, J.; Sabel, A. *Angew. Chem., Int. Ed. Engl.* 1962, 1, 80. (c) Tsuji, J. *Organic Synthesis by Means of Transition Metal Complexes*; Springer-Verlag: Berlin, 1975; p. 113. (d) Tsuji, J. *Org. Synth.* 1984, 369. (e) Tsuji, J.; Nagashima, H.; Nemoto, H. *Org. Synth.* 1984, 62, 9. (f) Heck, R. F. *Palladium Reagents in Organic Syntheses*; Academic Press: London, 1985; p. 59.